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EXPONENTIAL ESTIMATES AND 711E SADDLE, POINT PROPERTY

FOR NBU`ML FUNCTIONAL DIF'F'ERENTIAL EQUATIONS

M. A. Cruz and J. K. Hale

1. Introduction. If A j o B j 0 j = 0 ) 1) ... ^ F1^ are n X n constant

matrices, det A
0 / 0

,,	 w
0	

Nand 0 ;	 < w1 < • • • < 	 = r are real

numbers, then a differential-difference equation of neutral type is

N	 N

F,^_ OAJX(t-w^) -
^=OBx (t-^j)^.

A fundamental problem is to determine in what sense the asymptotic

behavior of the solutions of (1.1) is given from a knowledge of the

solutions of the characteristic equation

N	 -btu
(1. )	 det A(%) _ O A(%) = E 

J=O 
(XAj -Bj )e ^.

Without exception, the results in the literature (see [1-5])

are based on the assumption that the initial function cp and its

derivative are defined. The estimate for the growth of the solution

and not the derivative of the solution is then expressed in termr . of

the roots of (1.2) and cp,c . This is very unsatisfactory for the

following reason. If a well-posed initial value problem has been

formulated for (11),, then one has chosen a space S of functions

mapping [-r J O] into En such that for any initial function cp in

S there is a solution x(cp) of (l.l) with initial value cp which is

 V'N^'

^^

i
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continuous in cp and the restrictioLY of x(q)) to [t-r,t] always

belongs to S. This defines a mapping T(t): S >S and one would

hope that the norm of this linear mapping could be obtained from the

solutions of (1.2). On the other hand, the results in [ 1-5] use

more smoothness properties for cp than are obtained for x(y) and,

therefore, one is not estimating the norm of T(t). It is the main

purpose of this paper to give a class of equations (1.1) for which

one can estimate the norm of T(t) using (1.2). The results are

stated in terms of general functional differential equations which

include differential-difference equations. An application to 	 .

perturbed linear equations is indicated by discussing the saddle

point property for nonlinear autonomous systems.

Finally, to avoid unnecessary complications in the specifica-

tion of the basic space S. we use the approach in [5] by considering

the integrated form of

d [4= ja _ (t_(D

76	 Crhk'*"	
k])	

Zk_OB k
x (t-'k)

For this equation, one has a well-posed initial value problem for

any initial function q) which is continuous on [-r.0] since it

is not required that x be differentiable in t, but only that
N

-0^',,kx(t-r11) be differentiable. Consequently., it is possible to

choose S as the space of continuous functions.

2. Notations and summary of known results. Let R+ = [0 ) .),En be

s:
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a real or complex n-dimensional linear vector space with norm I • I ^

r a 0 a given real number, and C be the space of continuous

functions mapping [-r,0] into 0 with I q) I = sup-x;ie601(P(e))•
Single bars are generally used to denote norms in different spaces,

but no conf'asion should arise. If x is a continuous function de-

fined on [a-r,o+A], A ;; 0, then, for each t e [v i a+A], we let

xt e C be defined by xt (e) x(t+e), -r 9 e 9 0. Suppose

0

a) ! [dTI(e)]q)(e)
-r
0

b) g ((p ) = f [dµ(e)]cp(e)
(2.1)	 -r

0
c) if [dµ(e)jT(e)I ;5 r(s)IcpI

-s

d) D(CA) = ((o) - g(4p)

where Tj,µ are n x n matrix functions with elements of bounded'

variation on [-r,0] and y(s), s ? 0, is continuous with r(0) = 0.

An autonomous linear functional differential equation is defined to

be

(2.2)	 T' D (xt ) = L (xt ) .

A aolution x = x(T) of (2.2) through (0,cp), q) € C, is a

continuous function defined on an interval [-r,A] A > 0, such that

X0 = cp and D (xt) is continuously differentiable for t e (0)A)
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and satisfies (2,2). It is proved in [5] that there is a unique

solution x(cp) through (0,9) defined on ( -w w) and x(q)) (t) is

continuous in t,cp. If the transformation T(t): C — ► C is defined

by

(2.3)	 xt((P ) def T(t,)(p

then it is also shown in [5] that (T(t), t ? 0) is a strongly con-

tinuous semigroup of linear operators with infinitesimal generator

A; 9(A) -+ C, Arp (e ) = 4 (e),

(2.4)	 -'(A) = (Cp e C ^ e C O ^(o) = g(^) + L(W))

and the spectrum a(A) consists of all those X for which

(2.5)	 det A(%) = 0, 0( %) = X I - l0e^'edµ(e) - loe^'edn(e),,
.r	 _r

1W
Moreover ., there are real constants K ? 1. a such that

(2 .6 )	 I xt (Cp )I = IT(t)(p( s Keat l (P I, t g 01 (P e C.

The basic problem is now to determine the relationship between

inf (a: there exists a K = K(a) so that (2,6) holds) and

sup (Re X: X satisfies (2,5)). For any X satisfying (2.5), there

is a solution eXtb of (2.2) for some vector b. Therefore,
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sup (h: ...) ; inf (a: ...). It certainly seems as if these two

numbers should be the same, but we are unable to prove this at the

present time. In (6). D. Henry has shown these numbers are equal

if the space C is replaced by W (l) 0 the space of functions which

have square integrable first derivatives. In order to obtain some

results in C, we impose in the next section some conditions on the

"difference operator" D.

3. The characteristic equation. Suppose µo is an n X n matrix

function whose eleinent, ^ zze of bounded variation, r (S) is a con-

tinuous nonnegative scalar function defined on (0,M), Y (0) = 010

and let

a) Do ((P) = (P (0 ) - go(q))
0

(3.1)	 b) go (y ) = f (dµo(e) J'cp(e)
-r

0
C) if [dµo(e)]cp(e)) s Y (s)sup_sseg0I cp (e))	 0 t: s i r•

-s

in this section, we consider in detail a special case of (2,2);

namely ., the functional "difference" equation

(3 .2 )	 Do(Yt)	 Do (cp )	 t ? 02

YO =

and., in particular s the nature of the characteristic equation of this

4

4w
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system. Afterwards, the results will be applied to obtain informa-

tion about the characteristic equation of the more general system

(2 .2 ) •

Let us denote the semigroup and infinitesimal generator

associated witi (3.1) by To (t) and Ao, respectively, and let

(3.3)	 L1o(^) = T - f exedµo(e).
-r

The characteristic matrix of (3.2) is then given by o (^,) .

Along with system (3.2), we consider the "homogeneous" eq ua-

tion

(34)	 Do(yt) = 0,	 t ? 0

YO = P Y	 Do (CP) = 0.

Definition. 3.1. If Do is given in (3.1), the order , a a of Do
D

is defined by

(3.5) a o = inf (real a: there is a K(a) with I To(t)epl
D

K(a)eat  I (p j , t ? 0, for all 9 with D°(CP ) = 0).

This definition is equivalent to

(3.6) a o inf (real a: for any cp in C, Do (cp)	 0, there is a

D
K(cp,a) with IT0 (t)cpl 9 K(cp,a)eat^ t ? 0).
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In fact, since 
D0 

is continuous and linear, the set consisting of

all (p in C such that Do ((p) = 0 is a Banach spac e and the

operator Tom is a continuous linear mapping of this space into

itself for each t a 0. The principle of uniform boundedness now

Implies that the set on the right hand side of (3.6) belongs to the

set on the right hand lido of (3.5). The converse inclusion is ob-

vious and this shows that a 0 may be defined by either (3.5) or

D

(3.6).

Notice that a o is determined by the exponential behavior
D

of the solutions of the homogeneous equation (3.4) and not the complete

equation (3.2). The reason for this is the following: every con-

stant function satisfies (3.2) regardless of the nature of the

operator Do. This is a consequence of the fact that X = 0 always

sat afles the characteristic equation. The homogeneous equation is

considered to eliminate this obvious common relationship among all

operators Do.

In general, we do not know how to relate the number a o
D

with the roots of the characteristic equation. However, the follow-

ing lemma is a special case for which this relationship is known.

A more general result is contained in [7].

Lernma 3 R 1. 16f

N
(3 . 7)	 DO(CP) = C	

r
(a) - `k=,A'k -'^k), (? < r  s 

r ^
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v

where T /rte is rational if N > I., than

N	 -X'tk
(3,$)	 a o = sup (Re X. deb ^^ - 	 ^ 0).

D
;.,Ae

Proof: If Do(q) = q)(0), then a o w -00. Suppose b o is the

sup in (3.$) and a > b o• If y is a solution of DoYt 0, xo =(P)

D

and y(t) = eatz(t), then

Do(ea•zt) w 0

ra4
^O °= a	 (P .

If we let Dl(*) = Do (ea* *), then

N	 -a

	

rr	
o

and

N	 - (v+ a)T

	

bD =sup (Re v: det I -,Ake	 k	 0}1

	

N	 -^,Tk

sup (Re (%-a): det- `k=lAke
	

_ 0)

a o - a<0.

D

Therefore. Dl is a uniformly stable operator and Lemma 3.2 in (8]

implies the existence of an a > 02 P > 0) P1 > 0, such that

0
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Zt (e"a'(P)I is pe
-c^b I 0-	I 
	

-191	 t a 0.

Consequently, there is a P2 > 0 such that

lytl IS p2e
(a-a)tl(PI 9 P2eat

i(P l	 t a 0.

This implies a 0 ;9 bDo'
4

For any e> 0, there is a X with b o e 4 Re X ;9 b o	D 	 D
and an n-vector c such that y(t) eXtc is a solution of

Doyt 0. Therefore, a o > b u _ e for every e > 0. Thl,s proves
D	 D

a 0 - bDo and the lemma.

Lemma 3.2. There exist ip j in .'(A°) j j = 1p2;P ... ti. :such; that if

0 = (91s... a 9n) i then D°(To(t)O) Do(0) - I, the identity, Also,

for any a > a 0) there is an M = M(a) such that

(3.9)	 ITo(t) I ;5 M(l+e at ),	 t 9 0.

Proof:	 Let us consider the equation (3.4) anti, in particular, all

solutions of this equation which are polynomials in	 t.	 If we let

d%
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where e(%) is defined in (3.3), then a direct calculation shows

that

Vim.
	 tk

Y(t) =
	

O%.k 71.-

is a solution of equation (3. 4) if and only if

(3.11)	 Am°a = 0P

rp1(O^p2(p) ... Pm+l(0)

Am
	m-1

0 0	 ... Pi(0) Ja0

Let m0 be the smallest integer such that the equation (3.4)

has no polynomial solution of degree m. Then for every 
a0 

^, 0, and
is

every a,,....,am , the equation Ao a 0 ^ 0. If we choose the vector
m0.1	 0 0	 m0-1	 Q

a	 such that Am _la	 0, then the equation (3.11) is equivalent
0

to the equation

P0 (0)a^ + P2(0)am _1 +...+ Pmt+ 1 (0)a0 = 0.
0	 0

On the other hand, by the choice of m a this equation has no solution
m

except a 0 = 0 if a0 # 0. Therefore, the equation

P1 (0) m + P2 (0)am 
-1 +...+ p°m 

+l(0)ao = b0	 0	 0

m

has a unique solution a 0 with ao J 0 for every b. In particular,

the matrix equation



I

Am a0	 O
o

0

where I is the n X n Identity matrix., has a unique nm0 X 
m0

matrix solution which we denote by (3.11) with each 
01i 

an n x n

matrix.
m

if y is defined by (3.10) for this a. ^ and m m0, we

see that

m
o	

0 0
	 k m0 k

D (yt ) = 1^=OD t+.) - k 1. )

m0 k 0	
tk-j

`,X-0 7.j_ OPj+l(0) -^
	

amO_k

m0 V

V-0-

-1

VP 1 (0)	 -,

	

,6=0 q W-	 O- 2 U ^:

Therefore,, y(t) is a continuously differentiable solution of (3.2)

on (-^o^ ^) with initial value 0 at t = 0 such that D0(D _: 1.

Since Do (yt ) = 0 for t in (-0D, 00) t it follows that 0 is in

O(Ao ) .

It remains only to prove the estimate (3.9). For any a > a o^
D

there is a constant Ml Ml (a) such that for any a with

a 0 + (a- a 0)I 2 <a<a.,
D	 D

r	 ,;

	

yt) s M1eat	 t z^	
;.

I

i'

u.
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sincejrt satisfies (3.) . Choose a 0. Since

t+e
y(tq,0)	 0(0) + f y(s)ds

0

for t a; 0. -r $ e 9 0 1 this yields the estimate

at
IY (t) s 

M2 1 + e	 t ? 00
a

Since a < a. one can obtain the estimate (3.9).

For any H e C([0 p oo),En), H(0)	 01 it follows from [8] that
2

there is an n X n matrix function B : [ - r,c*)	 n of bounded

variation on compa:t sets of [ - r,co), B0 (t) = 0, -r $ t s 0, such

that the solution of

(3.12)	 D0(Yt) = Do((p) + H (t)p t	 00

YO CP

is given by the variation of consuants formula as

t
(3 .13)	 yt = T0 (t )cp - f (dsBt_SaH(s)•

0

Lemma 3.3. For any a > a p) E > 0, a + g 0 there is an M
D

M(a g ) > 0 such that	 "{

t
(3.14)	 if [dsB0_s]H(s)l 9 M ( l+e't ) e tsu%,sst j H ( s )j	 t 0•

0

Proof; If y is the solution of (3.2) and o is given in Lemma 3.2,°

then zt = yt - To(-')(DDo((p) satisfies D o (zt) = 0, zo cp - OD0 ((P) •



r

i	 e

3.3

Therefore, for any a > aDo, there is a K1 such that

I zt I ;i Kleat I z0 I _ Kleat I 
(p _ (DDo ((p ) I •

Lemma 3.2 and the continuity of Do imply the existence of a

K2 = K2 (a) suc , that

1 ?(t)(pI s K2 (l+eat) Icp1	 t ? 0.

Using an arguwant similar to the proof of Theorem 3.1 in (9J, there

is a K K(a) > 0 such that

1

le(t), + f IdsBo (t-s)I tg K(l+eat), t - 0.
0

if k - k(t) is the integer such that k ig t < k + 1, then for any

e>0, a+e^0,

t	 k+l
if [dsB,°t_S]H(s) I s K Z (l+eao ) supo;5s t I H ( s ) I
0	 J=1

	

s K(k+l) + k^le(a+p')sup 	 I H ( s ) I
j^l	 1 Ossst

s e 
(a+g),(k+l)	 1'(tfl) + a+e	 sup09 Sst (H (s) I

e	 - 1

s M(l+eat )e t sup0_S s_^t I H(s)I
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for some constant., M. This proves the lemma.

Lemma 3. 4. For any a > a OP the roots of
D

(3. 5)	 det 2(x) = a, 2(>.) = I - foe xe 
dpo (e)

-r

'	 have real parts less than or equal to a and there is a 8(a) > 0

'	 such that Idet 2(X)' ? S(a) on Re X a.

Proof: If k satisfies (3.15), then there is a nonzero n-vector

b such that y(t) = eXtb satisfies D°(yt) = 0. Definition (5.1)

of a o implies the first part of the lemma.
D

If the second statement of the lemma is not true, there is a

sequence (Xk), k = 1,2^ ... of points on Re X = a such that

Idet 2(%k)l s l/k, k = 1^2^	 This implies the existence of an

eigenvalue of 2(%k)s) with modulus	 (1/k)1/n. Suppose tk is

such an eigenvalue of p° (Xk) and bk, (bkj = 1, is an eigenvector

associated with tk.
t

The function y (t) _ e bk satisfies

D°(k =e"kt t 	 tz0t	 k k

Y e -k* b 	 D° (Y)	 kb
0	 k	 0	 k

If 0 is the matrix defined in Lemma 3.2 and z  = t

	

	 °T(t),Dgkbk
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then

( elkD°(zk) = ( e^ - 1)t b	 t 2; 0t	 k k

z0 = x0 - 09kbk^ D° (20 ) = 0.

The variation of constants formula (3.13) implies

z  = T°(t)zkft( d Bo ] (e s - -) bt	 0 0 s t- s	 k k

From the fact that D°(z0) == 0. the definition of a ° and
D

Lemmas 3.2 and 3.3, for any a., a 0 < a < a. e > 0, a + e 14 0

there is a constant M = M(a^e) such that

(3 .16)	 I yt l 5 I T
o(t)(D%bkl 

+ I ztI

s M(l+eat) I tkI + MeatL ski + suP_rse50e^,

s
+ M(l+eat)

keetl *p	 i EO^s^t
+
	- 1 I '

On the other hand, the definition of yt and the fact that a < a

implies the existence of a T > 0 such that

Iyti _ eatsup_r^e^0ea9 > Me at sup
-r^eg0ea9'

I	 .

for t? T: k= 1.92^ . , , . Since 9k --)0 as k -+ w^ this contradicts
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(3.16) and proves the lemma.

Lemma 3.5. . Suppose Do is defined in (3.1), 2(%) in (3.3),

a e el([-r,O],En 
2
 ), and 1 is an n X n matrix function of bounded

variation. For any a > a o, the equation
D

(3. 17) 	 det 4(%) ^ o, A(%)	 ^,^Q°(^,) _ f0exea(e) de] - 1 exedn(e)
-r	 -r

has only a finite number of roots X with Re X z a.

Proof: If we consider A(%) as the characteristic matrix of a

neutral functional differential equation (2.2), then the estimate

(2.6) implies there exists a real number c such that Re X < c

for all X satisfying (3.17). If a ? c, then the above lemma is

true. If a < c, then Lemma 3.4 implies there is a S = S(a p e) > 4

such that det 60 (%)  ? 6, a s Re % s c. From (3.17), the Riemann

Lebesgue- lemma, and the fact that µL satisfies (3.1c),

det A(%) _ ^n ô (^.) + h (^,)

where h(,)/,n -^ 0 uniformly as 1%1 -^ W, a s Re X s c. Therefore,

all zeros of (3.17) in this strip must be bounded. Since del A(%)

is an entire function of X. the lemma is proved.

4. Estimates on the complementary subspace. Suppose D° is defined
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R	 l	 n2
in (3.l),	 e -t([-roOlI E )^ ^1 is an n x n matrix function whose

elements are of bounded variation and let

(• 1 )	 D(y)	 D0 (4p )	 t0a(e)cp(e)de = (p (o) - !0[dµ(e)3cp(e)
-r	 -r

0

L(q))	 f [dq(e)]cp(e) •
r r

For the linear system (2.2) we denote the associated semi-

group and infinitesimal generator by T(t) and A. respectively.

Recall that the spectrum a(A) of A coincides with the roots of

the characteristic equation (2.5)

For any a > a o, it follows from Lemma 3.5 that the equation
D

(2.5) has only a finite number of roots X with Re X ? a. If

a ; (X a ar(A): Re X g a), then it is shown in [5] that the space

C can be decomposed by A  as C 
Pa 

E) 
Q  

where Pa, 
q  

are

subspaces of C invariant under T(t) and A. the space Pa is
I`

finite dimensional and corresponds to the initial values of all

those solutions of (2,2) which are of the form p(t)eXt where p(t)

is a, polynomial in t and 	 e A a• Therefore, the spectrum of A

restricted to Qa is a(A) A 	 our main goal in this section is
to prove there is a constant K(a) such that

T(t)q)I s K(a)e
at

I(PI .. t z o, q) E Qa•

To do this, we need the following lemma which is essentially



r

contained in the proof of Theorem IV.1 of [5].

Lemma 4.1. Suppose a is a real number such that only a finite

number of roots of (2.^) have real parts greater than or equal to

4, there is a constant m > 0 such that, for all read, g,

J det (a+ig) J	 m > 0 and o' I (a+it) ^ ^(J ^I ') as	 If

C is decomposed by 
a 
	 e a (A) : Re X z a) as C Pa ED Qa,

then there exists a K = K(a) z 1, such that

(4.2)	 1 T(t)q)I ;i Keat ( J q) 1 + J^J ), t z 0, q) e O(A) n Qa•

For any H e C([O,co),En) 0 H(0) = Op it follows from [9] that
2

there is an n x n matrix function B: [-r,O] -a ► En of bounded

variation on compact sets of [-r,o*), B(t) = 0, -r 9 t ig 0, such

that the solution of

(4.3)	 T [D (xt) - H(t)] = L(xt), t ; 0.,

X0 9

is given by the variation of constants formula as

t	 t

(4.4)	 xt	 T(t)(p - ! [dsBt-s]H(s) = T(t)(p + ! Bt-sdsH(s).0	 0

P
If we let 

xta be the projection of xt onto Pa defined by the

F

z

S

r



r

(4.$)	 D0(xt)	 D°((P), tz0, x0 = 4) eQA .ai

19

P
above decaikyosition of C, then it fellows that there is a Bt 

P
t 2; 0^ Boa 0 9 of bounded variation on compact subsets of [0 P )

P
such that x t a satisfies (4.4) with xt, (P. Bt replaced by

Xt Pa Pa res ec:tl.vel.	 if we define B e = B	 Bt', then
t^^ ^$t^	 P	 y	 t	 t - B t'
(4.4) is equivalent to

P	 P	 t	 P
(4.5)	 xta T(t)T a - f [dsBtas]H(s)

0

xQ
Q

	

	 Qa 
= TNIP a ! 

t 
[asBt

Q
as]H(s)•

0

Theorem 4.1. Suppose D is given in (4.1). If a > a o is such

that X € a(A) implies Re k ^ a and C is decomposed by Aa =

(X c a(A): Re > a) as C = Pa 0 Qa) then there is a constant

M = M(a) such that

(4.6)	 )T(t)(p( 9 Me at-  t z 0) q) e Qg

(4,7)	 B	
1

aj + f 1d 	 sBQa 	 Meat,	 t z 0t	 o sts

where B is the matrix occurring in the variation of constants
Q

formula (4.4) and Bt  is defined as above.

Proof Case 1. a = 0 ) L a 0 that is, the equation

9
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If 0 is the matrix given in Lonna 3.2, then

To (t )4) = To (t ) 0QaDo (q ) + To (t ) (cp -0QaDo ((p ) •

Since Do((p-OD%o)) = 0 and each column of 0 is in	 (A°), the

definition of a o and Lemmas 4.1 and 3.2 imply the existence of
D

K 16 K(a) such that

M

To (t)Cp1 s Keat I Do (r) I + Keat Icp-0%0 ((P) l •

Since D is continuous ) this completes the proof of the theorem for

the case a M 0, L, =. 0.

Relation (4.7) follows as in the proof of Theorem 3.1 in [9].

Oaf. a A 0, L A 0. in this case 3 A(%) is given by (2.^),

(4.9)

	

	 det A(%) = X det A (%) + h(%)

adj A(%) = 0-ladj e(X) + G(%)

A(%) -1 = [det A(%) ] -ladj A(%)

W(X)k = G(X) - A(%) lh(%)
()	 Xndet A°(%)

where adj A(%), adj 2(%) designate the cofactor matrices of
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A(%), 2(%), respectively. if a > a o, then Lemma 3.41 the facts
A

that µ 0 n are of bounded variation, 	 is monatomic at zero and
n

a C 91 ([ -r,03
0
E 2) imply that h(%) = &(0- 1 ) 0 G(X)

w(%)	 &(X-2) as I XI	 Re X = u.

Using standard Laplace transform techniques, for any q) in

O(A) n % T,(t)cp is given by

(4.1O)	 T(t)(P(e) = f ext [y IWexe ( D (q) ) - X f°dµ(P)fPe%(a-a)q) (a)da
C	 -r	 0
a

- 1
0
dn (p ) fPe%(P-a)(p (a) da) - feel' (e-a)qp(a) da] d%

-r	 0	 0

where µ is the n X n matrix function of bounded variation given by

AM = 40 ( e )  + foa(s)ds and
a+iw

f = (2rri)- llim0) —. oo fCa	 a.- io)

Tree term containing	 e%(e..a)g f	 cp (cz)da and the one containing
0

t^ are treated in the same manner as in the proof of Theorem IV'.1

of [5]. Using the fact that A 1(%) is given by ( 4. 9), the re-
maining terms in (4,10) may be written as

f e'^trl 2(%)-
1 + W(X)]e^,e[D(q)) - 

X f^	
P

dµ(p ) fe%(^-Q`)cp (a)da]d%
C	 ^'	 -r	 0
a	 o	 ^

T°(t,)9 + f e^,tw(X)e^,9[D(Ip) - X f dji(P) f e (P-a)cp (a)da]d%.
Ca	 -r 	 0

The first term in this expression was treated in ease 1. Since
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W(X)	 &(%-P') as I % I --> co, Re X = a, the first tern in the integral

admits an estimate of the Form Ke at icp( . Since %W(X) = ®(%_ l) as

JXJ a a*, Re X = a, the last term in the integral can be shown to have

an estimate of the same form by using arguments similar to the one

used for the fi terms above.

Since O(A) is dense in C, estimate (4.6) holds for all cp

in C n Qa . Relation (4..7) is verified as in the proof of Theorem

3.1 in [8]. This completes the proof.

Corollary 4.1. Suppose D is given in (4.1), a o < 0, and all roots
D

of (2.5) have negative real parts. Then there is an a > 0, K > 0

such that

T(t)gj	 Ke-CItio, t v 0, (P 6 C)
1

Bt j+ f ( dsB,t_ s l s Ke"cct , t? 0.
0

Proof; Use Theorem 4.1 with a = -a greater than all roots of (2.5).

5. The saddle point property. Suppose DL satisfy (2,1). In

this section, we consider the linear system (2.2) along with the

perturbed 'Linear system

(5.1)	 dt [ D (xt) - ~'(xt )] = L(xt ) + F(xt)

where F,G satisfy the relations
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(5 .2 )	 F(0) = 0 0 G (Q )	 0

I F ((P — F ( ) i 9 µ(Q ) I CP — I
(G(Cp ) - G(* )I 9 µ(CF )I (P - I

for I cpl,	 < a and some continuous nondecreasing function µ(Q)

with µ(0)	 0.

It will also be assumed that the roo ts of the characteristic

equation

5. det A(X)  = 0 A(X) = X I_
oexedµ 6 -	 °eked

e
_r _r

have nonzero meal parts and	 aD < 0, where aD 	is defined in

Definition 3.1.	 This latter assumption implies that the space	 C

can be decomposed as

C=U G) S,

where	 U is finite dimensional and the semigroup T(t) generated

by (2,2) can be defined on	 U for all t e	 (-oo^) and there are

K > 0, a > 0	 such that .,

x

(5 •) + T (t )(P I	 `= Ke
at
 4^ 1 t g 0,	 q) e U

I T(t)(pl	 s Ke",t I(P I t z, 0,	 cp a S.

For any T e C, vre write	 9 = TU + cps: T	 a U, T	 e S.
I

The

-	 I

n

F,
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decomposition of C as U d) S defines two projection operators

7rU: C --+ U, TrUU = U, TrS : C -a S, TrSS = S, IrS _ I - rrU.

Suppose K,a are defined in (5.4) and x(T) is the solution

of (5.1) with initial value q) at zero. For any 6 > 0, let

B ,5 = (cp e C : J cp { ;96) and

(5.5)	 Y = (cp e C: 9S e Bs^zK, xt (Cp ) e BS) t ? 0))

= t^ a C: (P
U 

e B /2K^ xt (C) a Ba) t ;5 0) •

if r is a subset of C which contains zero, we say r is

tangent to S at zero if TrLfp	 TrSq)	 0 as cp --> 0 in r.

Similarly, r is tangent to U at zero if ( Tr'A 7rp ( —> 0 as

cp -a 0 in r.

We now give the main result of this section, generalizing

a theorem of Hale, and Perello (10] for retarded functional differ-

ential equations.

Theorem 5.1, With the notation as above, there is a 8 > 0 such

that Trs is a homeomorphism from the set 	 onto S n Bs/2K

and	 is tangent to, S at zero. Also, TrU is a homeomorphism

from the set CGS onto U n B6/2K and OAP-1. is tangent to U at

zero. Furthermore, there are positive constants Mir such that

(5.6)	 (xt((p)) s Me-Tt (cp l, t ? 02 cp in -V-5,

xt (T) I . Me	 1, 
t ^ 0, ^ In X115.
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Fina.11y, if F (cp ), G(rp) have continuous Frechet derivatives with

respect to (p and hS : S n Bs^2K	 Y, hU : U n Bs/2K --^ 9k, are

defined by hsgi = 7r, (P. (p e S n BS/2K, h = ^u y, (p e U n B5/2K)

then h  and hU have continuous Frechet derivatives.

Proof: The proof will follow as much as possible the proof of the

saddle point property for ordinary differential equations given in

Hale [11]. Using the above decomposition of C. the solution x =

x(cp) of (5.1) can be written as

(a) xt = xt+ xt
t

(5 . 7)	 (b) x  = T(t_a)x
a + 

f Bt-s[dsG(xs) + F(xs)ds]a

t
(c) x, -- T(t-c) Q + f Bt_ s [ dsG(xs ) + F(xs)ds]

Cr

for any a E (-o*,o*). Furthermore, K,a can be chosen so thati

O

(5. 8 )	 Bt +̂ 	 f I d sBt_s I s Kent, t s 0
_1

1

^ BtI + f IdsBt- s^ 	
Ke-at, t z 0.

0

Relations (5.8) also imply that K can be chosen so that

0

(a) I( dsBt_ S I :9 Kea(t-T), t S T s 0
T

(5.9)	 T

(b) I dsBS	 Ke-a(t-T), t ^ T i 0.
0

11:



r

'N

26

Using relation (5.9) and proceeding in a manner very similar to [10],

one finds that for any solution of (5.1) which exists and is bounded

for t 9 0, there is a cpS in S such that

t

	

(5. 10)	 Xt = T(t)q)S + f BS_s [dsG(x ) + F(xs)ds]
0

0
+ f BUs[dsG(xt+s) + F(xt+s)ds]co

for t ? 0. Also, for any solution x of (5.1) which exists and

is bounded for t 9 0, there is a cpU in U such that

t

	

(5.11)	 X  = T(t)cpU + f Bt_s [dsG(xs ) + F(xs)ds]
0

0

+ f BSs [dsG(xt+s ) + F{xt+s)ds]

for t ig 0. Conversely, any solution of (5.10) bounded on (0,00)

and any solution of (5.11) bounded on (-c0,0] is a solution of

(5.1). Of course, estimates made in the integrals involving G

are made using the relation

t	 t

	

(5.12)	 Bt_sdsG(xa) = -Bt_QG(xo)	 a [dsBt_s ]G(x ).

SWe first discuss the solution of (5.10) for any W

sufficiently small. Suppose K,a are the constants used in

(5.8), (5.9) and p(a), a ? 0, is the function given in (5.2).

6
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f

Choose S > 0 so small that

(5.13)	 (8K+4K/a)µ(S) < 1, 8K2(l+a l)(1+µ(S))µ0) < 1/2

4	 1

and define ffl( S) as the set of continuous functions y: [0 l oo) -> C

def S
such that jyj = supogt<wlyti 9 S/2 0 y0 = 0. The set „V(S) is

a closed bounded subset of the Banach space C([0,«*),C) of all

bouhded continuous functions mapping (0,00) into C with the uni -

form topology. For any y in 9(S) and any qS in S.

I CA 9 6/2K, define the transformation -6P - , (^S) taking Y(6)

into C([0 ) w),C) by

(5.14)	 (9Y) = ftBS _ [d G(Y +T(s)(p S ) + F(y +T(s)(pS)ds]
t o f-s s s	 s

+ f0BU
s s
[d G(y+s +T(t+s)cp	

t+s
S ) + F(y +T(t+s)cQS)ds]

m
- 

for t ? 0. It is easy to see that 360y e C((0,co),C) and (-01y) 8 = 0

Also, l yt + T(t)cpS( 19 S for all t ? 0. Consequently, from (5.12).,

(5-13); (5.14), (5.4) and (5-8).

Y) t 	(4K + aK)µ(5)5 < 5/2

and 9: -W(S) -a Y (s). Furthermore. in a similar manner,

y)t	 (z)t	 (4K + aK)µ(s) y z^	 y - z)

is
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for t 0, y, z c -W(8) and 9 is a uniform contraction on -V(5).

Thus .,	 has a unique fixed point y* = Y* (q) S) in	 (S). The

function xt yt + T(t)cpS obviously satisfies ( 5. 10) and is the

unique. solut on of (5.10) with I yt I	 S^2 and xO = (St	 ^	 . The fact

that 9 is a. uniform contraction on Y( s) implies that y*((pS)

and therefore x* (CPS ) are continuous in cpS.

With x* defined as above, if x* = x* S x* x* S

then

xt - xt 	T (t ) (^ - ^S) - Bt[G (cp ) - G(^S)]

- ft[d BS ] {G (x* ) - u (x* )] + ftBS [F (x ) - FC*)]as
0	 s t•-s	 s	 s	 0 t-s	 s	 s

_ f^(d BU ][G( x* ) - G(x* )] + 
f^3U [F(x* ) - Fr* )]ds.

s _ S	 t+s	 t+s	 -S	 t+S	 t+s

Consequently, if u(t) = I xt - xtl , µ	 µ(S) ., then (5.4) and (5.9)

imply that

(5.15) u(t) s K(1+4)e-cttu(0)

+ µ f t I d BS I u(a) + KP f te-a(t-s)u(s)ds
o s is	 0

+ µ f^(djB s ju(t+s) + Kµ f e-asu(t+s)ds.
0	 0

For any t ? T ? 0. relation (5.8), (5.9) and this latter expression
t T t

with the first integral written as f = f + f imply that
0 0 T

a
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2g

(.5.16) u(t) 9 K(1+ ^i)e-atu(o) + Kµe-a(t-'r ) sup ^ 	 u(s)
O^s^T

+ Kµ sup ,,,,,tu (s) + Kµ f 
t 

e
_a(t _ S)
 u (s) ds

0

00

+ Kµ sup 
o;;s

u(t+s) + Kµ f e-asu(t+s)ds.
0

We first show that u(t) ->O as t -> oo. If this is not the

case, u(t), bounded for t ? 0 implies there is a v > 0 such that

M 
ou(t) = v > 0. For any 0 < e < 1, there is a tl > 0 such

that u(t) A 1 V1 t ? tl . Consequently ) for T = tl in (3.16)

and t ? t, this yields

U(t) ;5 K(l+µ)e u(0) + Kµe 	 sup05s;gt
1

 u(s)

+ Kµ9-1v + Kµ ftle-
a(t-s) u(s)ds + Kµ 9-1v

0	 a

+ v1+11)µe lv.

The right hand side of this equation has a limit as t -g oo which is

2K(1 a)µe- lv < 
-g 

A-lv < e- 1v.

Therefore TTL	 a u(t) < v which is a contradiction. Thus

u(t) -> 0 as t —► co.

Since u (t) -+ 0 as t -^ w,, u(t) has a maximum and an

argument similar to the preceeding shows that u(t) = 0 if u(0) _ 0.

t

<j

x,

it
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Thus there will be a constant such that u(t) 9 (const) u(0), t 'z 0.

Lot v(t)	 supt su(s). Since u(t) -*0 as t -► m, for

every , t 2 0. there is a t  a t such that v(t) = v(s) = u(tl)

for t s s s tlq V(S) < v(tl) for s > tl . Therefore, From (5.15),

-at 1

	

V(t) = u(tl) 6 K(1+µ)e	 u(0) + Kµ sup0,5s5t u(s)
1

+ Kµf + f	 v(s)ds Kµ(1 a)v(tl)
0	 t

s K(l+µ)e-atv(0) + Kµ sup0;is;it 
1 v(s)

t -a(t -s)
+ Kµ f e	 1 v(s )ds + FA(1+?)v (t)

0	 a

9 K(1+4)e
-at

v(0) + Kµ sup 0;is^tv(s)

+ Kµ f te-a(t-s)v(s)ds + K4(1+2)v(t).
0	 a

Since Kµ(1+2a 1) < 1/2, we have

(5 .17)	 v(t) s K (bje"'^v(0) +	 ()sup	 v(s) + IC (6) ft e-,v(s)ds
1	 K2	 O-s_t	

0

where

Kl(5) -	 < 2K(1+µ($))j
1-Kµ(6)(1+2a-

K2(s)	
K 1 ( 6 )	 < 2Kµ(5).
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Our next objective is to show that v(t) satisfying (5.17)

approaches zero exponentially. To do this, we first show that

('5.18)	 v(t) ii K(S)v(0), K3 (5) w 2Kl(s).

In fact, if this is not the case then there is a T > 0 such that

v(t) < K3 (s)v(0) for 0 < t < -r, v(r) = K3 (S)v(0) Consequently,

(5.17) implies

K3 (5)v(0) = v(r)	 [Kl (S) + K2(5)K3 (S) + K2(5)K3(S)a I1v(0)

17 + Y'2(S)(1+C' 1)3 (S)v(0)

< K3 (8)v (0)

since, K2(5) ( +a--1) < 2Kµ(5) (1+a i) < 1/2. This contradiction shows

that (5.18) is satisfied for all t 9 0.

Using (5,18) in (5, 17), we have

v(t) s Kl(s)e-cctv(o) + 
K2(5)K3(5)(1+0'1)v(o), t 4 0.

Choose P > 0 so that KiNe-CO < 1/4. Since K2 (5)K3 (5) (l+a 1)

< 1/2, it follows that v(P) 9 (3/4)x(0). Finally, since the initial

value 0 has no particular significance for autonomous equations,

it follows that v(t+p) ! v(t) for all t ? 0. This clearly implies

the existence cf an a, > 0 1 K4 > 0 such that

°}q
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-t
v(t) ; K4e	 v(0).

Consequently, returning to the definition of 
v and u, we have

I.

10 ((Ps)	 k* 
cgs)1 '6 rye

-at I
q)
s 

- (SI , t t 0.

Since X^(0) = Of this implies (5.6) is satisfied.

The above argwment has also shown that

Y =	 C CP = x*((P S), (P S ^ CPS 1 ;5s/2K )

if h : S n Bs/2K 	Y is defined by h S X* (CPS ), then hS is

continuous and

0
hs(^S ) = 91 + I BU Cd8G(x*s (CPS

)) + F(Xs(^S))ds] •cc

Also, with an argument similar to the above, one shows that

I hS((Ps)	h
gc9

S) I g I ,,s - (P
S I /2 for all qpS, ('p"S ins n B5/2K,

and thus, hS is one-to-one. Since h- = TS is continuous, it

follows that h  is a homeomorphism.

From the fact thatX* (0) = 0, x* (CP S ) satisfies (5.6) and
O

* (^S )	 -1 [ d BU ] G (X* ((s)) + 1 BU F(X*((S))ds,
cct 0	 s -s	 s	 Go _s	 s
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	 3

Ir',xQ( ►s )I ig 20(3.+a7')ji(2K1cpS 1

)Iq)sl

and this shows that	 is tangent to S at zero.

If F",G have continuous Frechat derivatives P' (cp) , G' (cp )

and satisfy (5 2), then I F' (cp) l S µ(s) for Icp l < S. From (5.14),

it follows that the derivative 91 (y) of -41
y 

with respect to

IPS evaluated at 
*8 

in S is

t
(R' (y)* ) t ,^ f B _ S ^dsG l (ys+T(s 8)T(s) S	 1 (ys+T(s)q))T(s)*'ds]

0

+ fOBU d G' y +T s 8 T s *S + PI y t+ s +T t+ cps T t^I-s dslp
cc^ 	 s	 s	 s 

t 2 00

Since I T(s) *S I ;i KI *S l and µ(ii) satisf ies (5. 13), it follows that

a

( ' W*S)t I	 (l+ )µ( B ) I *S I < 11 *S I	 t g o

Using the fact that the mapping 9 is a uniform contraction

on Y(S), one obtains the differentiability of hS(cs) with re-

s ect to 8p	 cp	 The argument for	 is applied similarly to the

above to complete the proof of Theorem 5.1.

Corollary 5.1., Under the hypothesis of Theorem 5.1. there is a

b > 0 such that each solution, of (5.1) with initial value in Bs

either approaches zero as t -)co (and their exponentially) or leaves

s l'`
r N

^x

I
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B for some finite time. Any solution with initial valve in B6

which is defined for t S -r must either approach zero as t -*-co

or leave BS for some finite  negative time.

Proof: There is a k z I such that ly *9 i ;9 kjcpj for all cp in

C. Suppose 5 is given as in Theorem 5.1 and choose 0 < 6 9 8/2Kk,

This ID, serves for the 5 of the corollary. A similar argument

applies to the last statement of the corollary.
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